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ABSTRACT 
 
 
An examination of the benefits of ensemble forecast calibration was performed for 3 

variables, 500-hPa geopotential height (Z500), 850-hPa temperature (T850), and 2-meter 

temperature (T2M). A large reforecast data set was used for the calibration.  Two 

calibration methods were examined, a correction for a gross bias in the forecast, and an 

analog method that implicitly adjusted for bias, spread, and applied a downscaling where 

appropriate.  The characteristics of probabilistic forecasts from the raw ensemble were 

also considered.  Forecasts were evaluated using rank histograms and the continuous 

ranked probability skill score.  T2M rank histograms showed high population of extreme 

ranks at all leads, and a correction for model bias alleviated this only slightly.  The 

extreme ranks of Z500 rank histograms were slightly underpopulated at short leads, 

though slightly overpopulated at longer leads.  T850 had characteristics in between those 

of T2M and Z500.  Accordingly, Z500 was the most skillful variable without calibration 

and the variable least improved by calibration, and the bias correction achieved most of 

the improvement in skill.  For T850, there was a more substantial additional increase in 

skill relative to the bias correction when the analog technique was applied.  For T2M 

forecasts, probabilistic forecasts from the raw ensemble were the least skillful, the 

application of a bias correction substantially increased the skill, and the application of the 

analog technique produced the largest further increase in skill relative to the bias 

correction.  Hence, reforecast data sets may be particularly helpful in the improvement of 

probabilistic forecasts of the variables that are most directly relevant to many forecast 

users, the sensible surface-weather variables. 
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1. Introduction 
 
 
 This note considers the effects of calibrating ensemble forecasts of three 

variables, 500-hPa geopotential height (Z500), 850-hPa geopotential temperature (T850), 

and 2-m temperature (T2M).  Calibration here refers to the adjustment of the ensemble 

forecast probabilities to account for model bias, spread deficiencies, and/or a 

downscaling from the model grid to observation sites.  Ideally, forecast probabilities 

would be reliable and sharp when calculated directly from the event frequency in the raw 

ensemble.   However, typically the forecasts are contaminated by systematic biases or 

deficiencies in spread.   Consequently, there is a growing body of literature now offering 

many possible ways of calibrating ensemble forecasts  (Hamill and Colucci 1998; Eckel 

and Walters 1998; Roulston and Smith 2003; Wang and Bishop 2005, Raftery et al. 2005, 

Gneiting et al. 2005).   

This article returns to consider calibration using reforecasts, a very large set of 

forecasts utilizing a stable model and data assimilation system.   Previous articles (Hamill 

et al. 2006, Hamill and Whitaker 2006) have considered how to calibrate precipitation 

forecasts, which may require special techniques because the forecast probability density 

functions (pdfs) are typically not normally distributed.  Here, the calibration of Z500, 

T850, and T2M appears to be simpler at first glance, for the forecast pdf and their errors 

may be approximately Gaussian.  In such cases, a variety of calibration techniques may 

work well.  Wilks and Hamill (2006) demonstrated that a number of parametric and 

nonparametric calibration techniques were suitable and several of the best were generally 

similar in their resultant skill for the problem of calibrating daily maximum and 
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minimum 2-meter temperature forecasts.  Wilks (2006a) also provides a summary of 

many of the proposed calibration techniques and intercomparison using a simple model. 

 We intend here to address two primary questions related to the calibration of 

Z500, T850, and T2M: first, how much skill improvement is produced from a simple 

elimination of gross bias in the model forecasts, and how much more is added by the 

application of a technique that also accounts for spread deficiencies in the ensemble and 

produces an implicit statistical downscaling?  Second, is calibration inherently easier or 

more difficult for one variable vs. another?   Since the dawn of numerical weather 

prediction, forecasters have examined the properties of Z500.  When considering 

calibration issues, is this a good proxy for understanding the characteristics of the more 

commonly utilized surface-weather variables?   

This note will not discuss the calibration properties as a function of training 

sample size; the recent Wilks and Hamill (2006) manuscript discusses this in depth for 

temperature forecasts and Hamill et al. (2006) addresses this for precipitation forecasts. 

The manuscript also will not present a comparison of many of the proposed calibration 

techniques; for such a comparison, see Wilks (2006). 

 Section 2 below will describe the extensive reforecast data set used in this 

calibration experiment as well as the verification data and techniques.  Section 3 provides 

results, and section 4 a brief conclusion.    

 
2. Data set, methods of calibration, and verification techniques. 
 
 
a.  Data 
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 In this experiment, we explored methods of calibrating ensemble forecasts using 

reforecasts and observations.  Our reforecast data set consisted of a 15-member ensemble 

forecast conducted from every day from 1979 to present, starting from 0000 UTC initial 

conditions. The forecasts extended to 15 days lead, with data archived every 12 h.  The 

model was a 1998 version of the National Centers for Environmental Prediction (NCEP) 

Global Forecast System (GFS).  It was spectral, with horizontal truncation at  global 

wavenumber 62, with 28 vertical levels.  The data was archived on a 2.5-degree grid.  

The ensemble initial conditions consisted of a control, initialized with the NCEP-National 

Center for Atmospheric Research (NCAR) reanalysis (Kalnay et al. 1996), plus a set of 7 

bred pairs of initial conditions (Toth and Kalnay 1993, 1997) re-centered each day on the 

reanalysis initial condition.  The breeding method was the same as that used operationally 

in January, 1998. For our purposes, we considered only the calibration of 500 hPa 

geopotential, 850-hPa temperature, and 2-m temperature, and we processed forecasts 

from 1979 to 2004, a total of 26 years of forecasts.   The reforecast data set and model 

characteristics are described more completely in Hamill et al. (2006), which also provides 

a link for users to download the data set themselves. 

NCEP-NCAR reanalysis data (Kalnay et al. 1996) was used for verification of 

500-hPa heights (hereafter, Z500) and 850 hPa temperatures (hereafter, T850), and 

calibration for these variables was performed over the Northern Hemisphere. 0000 UTC 

surface observations over North America were used to demonstrate the calibration of 2-m 

temperature (hereafter, T2M).  We limited our calibration to stations where observations 

were available for 96 percent or more of the days between 1979 and 2004, a total of 292 

stations (Fig. 1).  The source of these surface observations was the National Center for 
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Atmospheric Research’s (NCAR’s) data set DS472.0.   While it would have been 

preferable for comparison purposes to calibrate against a gridded field, the 2-m 

temperature fields from the NCEP-NCAR reanalysis are not particularly useful; the 

analysis method does not utilize near-surface observations and inherits systematic errors 

from the first-guess fields.  We are unaware of any other high-quality, unbiased, gridded 

temperature reanalyses. 

 
b. Calibration methods. 

 
 1) ENSEMBLE RELATIVE FREQUENCY (“RAW”) 

 
 The simplest approach used no statistical calibration.  The relative frequency of 

event occurrence was estimated directly from the 15-member ensemble.   

 
 2) “BIAS-CORRECTED” RELATIVE FREQUENCY 

 
 In this procedure, probabilistic forecasts were generated from an ensemble of 

forecasts, where each member has been bias-corrected according to the long-term bias 

statistics in a cross-validated manner (Wilks 2006b, p. 215).  Bias corrections were 

calculated separately for each grid point, each year, and each day and were based on a 

centered, 31-day running-mean difference between the forecast and observed 

climatology.  For example, when calibrating  a 1 February 1979 forecast, the forecasts 

and observations excluded 1979 data but included data from +/- 15 days around 1 

February and data from 1980-2004, a total of 31 days × 25 years = 775 samples.  For any 

given day and year, the 775-sample average difference D between the ensemble-mean 

forecasts and the analyzed states was determined, and each ensemble member was 
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adjusted by subtracting the amount D from each member forecast.  The bias correction 

calculations were generated separately for each location, each year, and each day.  

Probabilities were then calculated using the relative frequency of event occurrence from 

the bias-corrected ensemble. 

 
 3) “ANALOG” 

 
 The third procedure was a simplification of the analog approach described in 

Hamill et al. (2006) and Hamill and Whitaker (2006).   The procedure for each sample 

location was as follows:  (1) extract the ensemble-mean forecast for this sample location 

and Julian day/year. (2) calculate the ensemble mean of reforecasts at this location for all 

other years and +/- 30 days around the Julian date of the forecast in step (1) (implicitly, 

this step is a cross validation).  (3) Determine the n closest reforecasts from (2) to the 

forecast in (1).  (4) Form an ensemble from the n analyzed states on the dates of the 

closest reforecasts in step (3).  (5) Determine probabilities from the relative frequency of 

event occurrence in the observed analogs.  This procedure has the desirable property of 

producing an approximate conditional distribution of the observed given the forecast 

(Hamill and Whitaker 2006).  Further, if the observed data is different in character (i.e., 

station data) than the forecast (i.e., gridded data), then the analog technique implicitly 

performs a statistical downscaling. 

 Probabilities were calculated for observed analogs of size n = 20 and 50.  In 

subsequent plots, the skill that is plotted reflects the largest skill of the two sizes tested.  

In general, short-lead forecasts had the largest skill with smaller ensembles, and longer-
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lead forecasts had the largest skill with larger ensembles.  See also Fig. 7 from Hamill et 

al. (2006) for an example of this with precipitation forecasts. 

 
c. Forecast verification. 

 
 1) RANK HISTOGRAMS 
 
 
 The rank histogram was used as a diagnostic of the ensemble’s ability to reliably 

sample the forecast uncertainty; see Hamill (2001) for a detailed discussion of its 

computation and interpretation.  Since the conventional application of this diagnostic 

assumed perfect observations, when imperfect observations or analyses are utilized, as 

they were here, the ensemble member forecasts should be perturbed with random noise 

consistent with the assumed error.  Here, for Z500, T850, and T2M, random, normally 

distributed noise were added to each member, with an assumed standard deviation of 12.0 

m, 0.6 deg C, and 1.5 deg C, respectively.  The larger perturbations for T2M accounted 

for the additional error of representativeness (Liu and Rabier 2002) when comparing the 

station data to the gridded forecasts. 

 When tallying the rank histograms for Z500 and T850, which were on a 2.5° 

longitude/latitude grid, the rank of the observed relative to the sorted ensemble was 

weighted by the cosine of the latitude, thereby normalizing the weight applied for that 

sample by the grid point’s area. 

 
 2) THE CONTINUOUS RANKED PROBABILITY SKILL SCORE 
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 The continuous ranked probability score (CRPS; Hersbach 2000, Wilks 2006b p. 

302) for a forecast on the ith Julian day, jth of NY=26 years, and kth of NP locations is 

defined as 

 
 CRPS

i , j ,k

f
= Fi, j ,k (y) ! Fi, j ,k

o
(y)"# $%

2

!&

+&

' dy  ,      (1) 

 
where Fi,j,k (y) represents the cumulative density function (cdf) as determined from one of 

the three forecast calibration methods discussed above, and Fi, j ,k
o

y( ) is the cdf formed 

from the observed datum oi, j ,k , a Heaviside function set to 0.0 for values below the 

observed and 1.0 for values above the observed.  Note that the CRPS can be interpreted 

as the mean-absolute error of the probabilistic forecast. 

 We are interested in the continuous ranked probability skill score, or CRPSS, 

where the forecast skill is calculated by normalizing it by the skill of climatology. 

However, following Hamill and Juras (2006), we did not use the conventional method of 

calculating the CRPSS, commonly defined as 

 CRPSS = 1.0 !
CRPS

f

CRPS
c

 ,      (2) 

where CRPS
f

represents the average forecast CRPS over all NS samples and 

CRPS
c

represents the average CRPS of a forecast generated from the climatological 

distribution of the observations.  We avoided the use eq. (2) because it was prone to 

overestimating skill in circumstances where the climatological distribution of the 

observations varied significantly from one location or one time of year to the next, which 

was certainly the case for these forecasts.   
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Instead, we performed the following procedure, similar to that proposed in Hamill 

and Juras (2006, eqs. 6, 8, and 9 therein), which addressed the tendency to overforecast 

skill.  The revised CRPSS calculated this skill scores separately for subsets with similar 

observed climatologies and then arithmetically averaged the resulting CRPSSes.   

First, assume that for all samples we have calculated the climatological 

uncertainty (spread) σi,j,k .  Define the mean observed climatology at this location and 

date as  

 

oi, j ,k =
op,q,r

31! NY ! NPr=1

NP

"q=1

NY

"p= i#15

p= i+15

"       (3) 

 
where the 31 days are centered on the Julian day i (in this calculation we assume no 

observations are missing; modification for missing observations is straightforward).  

Then σi,j,k was defined as  

 

 ! i, j ,k = op,q,r " oi, j ,k( )
2

31# NY # NP "1( )
r=1

NP

$q=1

NY

$p= i"15

p= i+15

$%&'
(
)*

1/2

.  (4) 

 
The samples were then split up into NC = 8 subsets of equal size, with each subset having 

a distribution of σi,j,k’s that varied through a narrow range.  This was achieved by sorting 

the σ’s from lowest to highest and dividing the ordered sample into eighths (subdivision 

into a larger number of subsets did not affect the skill calculation substantially).  

Formally, let 
 
r
S
= r

1

S
,… , r

NS /8

S!" #$  be the associated set of sample indices (i, j, k) that have 

been placed in the sth of the NC ordered subsets.  In the revised calculation of the 

CRPSS, the reference climatological score for the sth subset was calculated as  
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where F

rt
S

C
(y)was the climatological cdf associated with the tth sample in the sth subset.  

This cdf was formed from the integral of a Gaussian pdf with a mean of o
rt
S and a 

standard deviation of !
rt
S . F

rt
S

O
(y)  was the associated cdf of the observed .  Equation (5) 

merely calculated the reference climatological CRPS separately for subsets with 

approximately equal climatological variance.  Similarly, we calculated the average 

forecast CRPS for this subset as  

 

CRPS
f

(s) =

F
rt
S

f
(y) ! F

rt
S

o
(y)

"
#$

%
&'

2
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+(

) dy
t=1

NS /8

*
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     (6) 

 
where  F

r ( t )

f
(y)  was the cdf generated from the forecast method in question, raw, bias 

corrected, or analog.  The overall CRPSS was then calculated as 

 

 CRPSS =
1

NC
1!

CRPS
f

s( )

CRPS
C

s( )

"

#
$

%

&
'

s=1

NC

( .      (7) 

 
A disadvantage of eq. (7) is that it is less resistant to outliers (Wilks 2006b, p. 23) than 

the conventional method of eq. (2).   Since skill is bounded above by 1.0 but unbounded 

below, if subsets have particularly low skill, they may strongly depress the overall skill. 
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For 500 hPa height and 850 hPa temperature, eqs. (5) and (6) were modified 

slightly to account for the different areas encompassed by different grid points, weighting 

the samples the cosine of their latitude. 

 
3. Results 

 
a.  Rank histograms 
 
 
 Figures 2-4 show forecast rank histograms at 1, 4, and 7-days lead.  The shaded 

bars denote the rank populations of the raw forecasts, while the solid lines indicate the 

distribution of rank populations after the bias correction.  At day 1, all raw forecasts 

underforecasted the variable in question to varying degrees, reflected in the greater 

population of the higher ranks.  After bias correction, the distributions were more evenly 

centered, but Z500 had too little population of the extreme ranks while the T2M exhibited 

way too much population of the extreme ranks.  After bias correction, T850 exhibited a 

slight overpopulation of the extreme ranks. 

 At day 4, the same underforecasting bias was evident in the raw forecasts, but 

after the bias correction, now all the forecasts exhibited some overpopulation of the 

extreme ranks, with T2M again exhibiting the largest overpopulation.  The characteristics 

at day 7 were similar. 

 Figure 5 provides further illustration of the larger systematic errors of T2M.  Here 

we have plotted, averaged over all samples, the absolute value of the bias divided by the 

observational climatological uncertainty (the standard deviation of the observed about its 

climatology, as in eq. 4).  It’s readily apparent that at short leads, the bias in Z500 was a 

small fraction of the climatological spread, while it was a large fraction for T2M, and in 
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between for T850.  As forecast lead increased, the ratio of bias to uncertainty increased 

for Z500 and T850, indicating that the bias was increasing to more like the high levels 

seen with T2M.  

Judging from the rank histograms and magnitude of bias, one would expect that a 

bias correction of T2M forecasts would be essential at all leads, while bias correction for 

Z500 would become increasingly necessary at longer leads.  However, since the T2M 

rank histograms remained non-uniform even after bias correction, this suggests that a 

technique like the analog that adjusted probabilities for the tendency of the observed to 

lie outside the range of the ensemble should more dramatically improve the skill of T2M 

forecasts relative to T850 or Z500.  We now test this hypothesis. 

 
b. CRPSS 

 
 Figure 6 shows the CRPSS of Z500 as a function of forecast lead.  Correction for 

gross bias substantially improved the skill relative to the raw forecasts, though the 

application of the analog method, which also addressed biases in the spread, produced 

little additional benefit during the first week of the forecast.  During the second week, it 

produced a modest improvement in forecast skill. 

 Figure 7 shows the CRPSS of T850 forecasts.  In comparison to Z500, the raw 

forecasts lost skill more quickly, and there was still a substantial impact from the 

correction of gross bias.  However, after the first few days of the forecast, there was a 

more substantial increase in forecast skill from applying the analog technique and its 

implicit spread plus bias corrections relative to the skill increase for Z500.  A 4.5-day 
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analog T850 forecast had skill similar to an ~3-day bias-corrected forecast or a 1.5-day 

raw forecast. 

 Figure 8 shows the CRPSS of T2M forecasts.   The raw forecasts, even on the first 

day, had skill worse than the reference climatology, though the bias correction boosted 

the skill to above zero.  Relative to bias-corrected T850 and Z500, the analog method 

added more skill, with a 3-day analog forecast having approximately the same skill as a 

1-day bias-corrected forecast.  This dramatic improvement conformed with our 

expectations given the shape of the rank histograms, previously discussed. 

 Why were the raw forecasts so unskillful?  Figure 9 shows the average CRPS (the 

raw score, not the skill score) of the forecasts calculated separately for the lowest and 

highest of the eight climatological uncertainty subsets used in eq. (7).  The subset with 

large climatological uncertainty showed a raw CRPS smaller than the climatological 

CRPS at early leads but larger than the climatological CRPS at longer leads.   For the 

subset with small climatological uncertainty, the average CRPS of the forecast was 

uniformly larger than the CRPS of climatology, indicating that at day 1 the errors had 

already saturated.  Hence, the reason that the overall T2M CRPSS was so small was 

because there were many samples where the CRPSS of climatology was small enough to 

be an extremely tough reference forecast to beat.  Consequently, the overall skill was 

diminished substantially by the negative skill at for these samples.  Note also in Fig. 9 

that after the application of the analog technique, the forecast CRPS was reduced to less 

than the CRPS of climatology for both large and small uncertainty subsets. 

 
4.  Conclusions. 

 



 15 

 An examination of the effects of calibration was performed for 3 variables, 500-

hPa geopotential height, 850-hPa temperature, and 2-meter temperature forecasts.  Two 

calibration methods were examined, a correction for a gross bias in the forecast and an 

analog method that implicitly corrected for both bias, spread, and downscaling.    500-

hPa geopotential height was the variable with the most skill before calibration and the 

least dramatically improved by calibration.  A simple bias correction achieved most of 

the improvement in skill.  For 850-hPa temperature, the raw forecast skill was somewhat 

diminished, and there was a more substantial additional increase in skill relative to the 

bias correction when the analog technique was applied.  For 2-m temperature forecasts, 

the raw forecasts were unskillful, and the application of the analog technique produced a 

dramatic increase in skill relative to the simple bias correction. 

 Of course, 2-m temperature forecasts will have a wider variety of users than 850-

hPa temperature or 500-hPa geopotential.   Previously, we have demonstrated with  

precipitation calibration experiments (e.g., Hamill et al. 2004, 2006, Hamill and Whitaker 

2006) that precipitation forecasts were particularly difficult to calibrate and required a 

large forecast sample to improve the forecasts substantially.  Here, surface-temperatures 

turned out to be the most difficult to forecast correctly without calibration and the most 

amenable to forecast improvements through calibration.   Previous work (Wilks and 

Hamill 2006) showed that large training samples were necessary to fully realize the gains 

from statistical calibration.  Taken together, these results reinforce the our previous 

assertion that large reforecast data sets may be particularly helpful in the improvement of 

probabilistic forecasts of the variables that are most directly relevant to forecast users.  
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We again recommend that the computation of reforecasts and the subsequent calibration 

of the forecasts become regular parts of the numerical weather prediction process. 
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FIGURE CAPTIONS 

Figure 1:  Station locations for calibration of 0000 UTC 2-m temperature forecasts. 

 
Figure 2: Rank histograms for 1-day forecasts. (a) 500-hPa geopotential height, (b) 850-

hPa temperature, and (c) 2-m temperature.  Shaded bars denote the rank histogram 

before bias correction, and dark lines after the bias correction. 

 
Figure 3:  As in Fig. 2, but for 4-day forecasts. 

 
Figure 4:  As in Fig. 2, but for 7-day forecasts. 

 
Figure 5:  Ratio of gross bias to the climatological uncertainty as a function of time of 

year and forecast lead. (a) Z500, (b) T850, and (c) T2M. 

 
Figure 6: Northern-Hemispheric average CRPSS as a function of forecast lead and 

calibration method. 

 
Figure 7:  As in Fig. 5, but for 850 hPa temperature. 

 
Figure 8:  As in Fig. 5, but for T2M forecasts. 

 
Figure 9: Average CRPS of raw and climatological forecasts for (a) the 1/8th subset of 

samples with the highest climatological uncertainty, and (b) the 1/8th subset with 

the lowest climatological uncertainty. 
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Figure 1:  Station locations for calibration of 0000 UTC 2-m temperature forecasts. 
 



 23 

 

 
 
Figure 2: Rank histograms for 1-day forecasts. (a) 500-hPa geopotential height, (b) 850-
hPa temperature, and (c) 2-m temperature.  Shaded bars denote the rank histogram before 
bias correction, and dark lines after the bias correction. 
 
 

 
 
Figure 3:  As in Fig. 2, but for 4-day forecasts. 
 
 
 

 
 
 
Figure 4:  As in Fig. 2, but for 7-day forecasts. 
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Figure 5:  Ratio of gross bias to the climatological uncertainty as a function of time of 
year and forecast lead. (a) Z500, (b) T850, and (c) T2M.
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Figure 6: Northern-Hemispheric average CRPSS as a function of forecast lead and 
calibration method. 
 
 
 

 
 
Figure 7:  As in Fig. 5, but for 850 hPa temperature. 
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Figure 8:  As in Fig. 5, but for T2M forecasts. 
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Figure 9: Average CRPS of raw, bias-corrected, analogs, and climatological forecasts for 
(a) the 1/8th subset of samples with the highest climatological uncertainty, and (b) the 
1/8th subset with the lowest climatological uncertainty. 


